Torsion points on elliptic curves

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Torsion Points of Elliptic Curves

Elliptic curves as an area of mathematical study are initially simple to understand, but reveal startling complexity when considered over different fields. This paper discusses the general properties and characteristics of projective space, elliptic curves, and the group structure that arises with certain binary operations on the curve. We discuss elliptic curves over Q, including the topic of ...

متن کامل

Torsion points and matrices defining elliptic curves

Let k be an algebraically closed field, char k 6= 2, 3, and let X ⊂ P be an elliptic curve with defining polynomial f . We show that any non-trivial torsion point of order r, determines up to equivalence, a unique minimal matrix Φr of size 3r×3r with linear polynomial entries such that det Φr = f . We also show that the identity, thought of as the trivial torsion point of order r, determines up...

متن کامل

Torsion Points on Elliptic Curves with Complex Multiplication

i.e., the supremum of all orders of torsion points on elliptic curves defined over some degree d number field. Write T (d)′ for the set of prime divisors of elements of Td, and P (d) for the largest element of T (d)′. Let TCM(d) (resp. TIM(d)) be the subset of T (d) corresponding to elliptic curves with complex multiplication (resp. with algebraic integral modulus j(E)), and similarly adding th...

متن کامل

Elliptic Curves with Maximal Galois Action on Their Torsion Points

Given an elliptic curve E over a number field k, the Galois action on the torsion points of E induces a Galois representation, ρE : Gal(k/k) → GL2(b Z). For a fixed number field k, we describe the image of ρE for a “random” elliptic curve E over k. In particular, if k 6= Q is linearly disjoint from the cyclotomic extension of Q, then ρE will be surjective for “most” elliptic curves over k.

متن کامل

Almost Rational Torsion Points on Semistable Elliptic Curves

If P is an algebraic point on a commutative group scheme A/K, then P is almost rational if no two non-trivial Galois conjugates σP , τP of P have sum equal to 2P . In this paper, we classify almost rational torsion points on semistable elliptic curves over Q. 1 Definitions and Results Let X be an algebraic curve of genus greater than one. Let J(X) be the Jacobian variety of X, and embed X in J(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the American Mathematical Society

سال: 1990

ISSN: 0273-0979

DOI: 10.1090/s0273-0979-1990-15935-x